环球科创网

初二因式分解题100道计算(初二因式分解题100道)

更新时间:2024-02-16 23:24:24

导读 大家好,我是小环,我来为大家解答以上问题。初二因式分解题100道计算,初二因式分解题100道很多人还不知道,现在让我们一起来看看吧!1、...

大家好,我是小环,我来为大家解答以上问题。初二因式分解题100道计算,初二因式分解题100道很多人还不知道,现在让我们一起来看看吧!

1、第 二 章 因式分解 §2-1因式与倍式 壹、本节重点 (1)如果多项式A能被多项式B整除,商式为多项式C,可以写成ABC,也可以写成ABC。

2、这个时候,我们说多项式B和多项式C是多项式A的因式,而多项式A是多项式B和多项式C的倍式。

3、 (2)将一个二次式写成两个一次式的乘积,叫做这个二次式的因式分解。

4、 贰、例题 例1.判别x +1是否为2x3-3x2-2x + 6的因式? 解: 【答:不是】 例2.判别2x3 + x2-4x-3是否为2x-3的倍式? 解: 【答:是】 例3.a-b是否为ac-bc的因式?为什麼? 解: 【答:是】 例4. ax + ab是否为a的倍式?为什麼? 解: 【答:是】 例5.设x +1是x2 + mx +2的因式,求m值。

5、 解: 【答:3】 例6.设x3 + 4x2 + nx-10是x-2的倍式,求n值。

6、 解: 【答:-7】 参、习题 1.判别x + 2是否为x3 + x2-4x-4的因式? 解: 2.判别2x3 + 3x2-8x-12是否为2x + 3的倍式? 解: 3. x-y是否为ax-ay的因式?为什麼? 解: 4.6y + xy2是否为y的倍式?为什麼? 解: 5.设x-2是x3 + mx2 + 3x + 2的因式,求m值。

7、 解: 6.设2x3 + nx2-1是2x-1的倍式,求n值。

8、 解: 肆、习题解答 1.是 2.是 3.是 4.是 5.-4 6. 3 分解因式 1.2x4y2-4x3y2+10xy4。

9、 2. 5xn+1-15xn+60xn--1。

10、 3. 4. (a+b)2x2-2(a2-b2)xy+(a-b)2y2 5. x4-1 6.-a2-b2+2ab+4 7. 8. 9 10.a2+b2+c2+2ab+2bc+2ac 11.x2-2x-8 12.3x2+5x-2 13. (x+1)(x+2)(x+3)(x+4)+1 14. (x2+3x+2)(x2+7x+12)-120. 15. 3x2+11x+10 16. 5x2―6xy―8y2 17.求证:32000-4×31999+10×31998能被7整除。

11、 18.设 为正整数,且64n-7n能被57整除,证明: 是57的倍数. 19.求证:无论x、y为何值, 的值恒为正。

12、 20.已知x2+y2-4x+6y+13=0,求x,y的值。

13、 三 求值。

14、 21.已知a,b,c满足a-b=8,ab+c2+16=0,求a+b+c的值 . 22.已知x2+3x+6是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n的值,并求出它的其它因式。

15、 1. 解:原式=2xy2•x3-2xy2•2x2+2xy2•5y2 =2xy2 (x3-2x2+5y2)。

16、 2. 解:原式=5 xn--1•x2-5xn--1•3x+5xn--1•12 =5 xn--1 (x2-3x+12) 3. 解:原式=3a(b-1)(1-8a3) =3a(b-1)(1-2a)(1+2a+4a2)* 提示:立方差公式:a3-b3=(a-b)(a2+ab+b2) 立方和公式:a3+b3=(a+b)(a2-ab+b2) 4. 解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2 5. 解:原式=(x2+1)(x2-1)=(x2+1)(x+1)(x-1) 6. 解:原式=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 7. 解:原式= x4-x3-(x-1)= x3(x-1)-(x-1)=(x-1)(x3-1)=(x-1)2(x2+x+1)* 8. 解:原式=y2[(x+y)2-12(x+y)+36]-y4=y2(x+y-6)2-y4=y2[(x+y-6)2-y2] =y2(x+y-6+y)(x+y-6-y)= y2(x+2y-6)(x-6) 9. 解:原式= (x+y)2(x2-12x+36)-(x+y)4=(x+y)2[(x-6)2-(x+y)2]=(x+y)2(x-6+x+y)(x-6-x-y) =(x+y)2(2x+y-6)(-6-y)= - (x+y)2(2x+y-6)(y+6) 10. 解:原式=.(a2+b2 +2ab)+2bc+2ac+c2=(a+b)2+2(a+b)c+c2=(a+b+c)2 11. 解:原式=x2-2x+1-1-8=(x-1)2-32=(x-1+3)(x-1-3)=(x+2)(x-4) 12.解:原式=3(x2+ x)-2=3(x2+ x+ - )-2=3(x+ )2-3× -2=3(x+ )2- =3[(x+ )2- ]=3(x+ + )(x+ - )=3(x+2)(x- )=(x+2)(3x-1) 13. 解:原式=[(x+1)(x+4)][(x+2)(x+3)]+1=(x2+5x+4)(x2+5x+6)+1 令x2+5x=a,则 原式=(a+4)(a+6)+1=a2+10a+25=(a+5)2=(x2+5x+5) 14. 解:原式=(x+2)(x+1)(x+4)(x+3)-120=(x+2)(x+3)(x+1)(x+4)-120=(x2+5x+6)(x2+5x+4)-120 令x2+5x=m则=(m+6)(m+4)-120=m2+10m-96=(m+16)(m-6)=(x2+5x+16)(x2+5x-6)=(x2+5x+16)(x+6)(x-1) 15.解:原式=(x+2)(3x+5) 说明:十字相乘法是二次三项式分解因式的一种常用方法,特别是当二次项的系数不是1的时候,给我们的分解带来麻烦,这里主要就是讲讲这类情况。

17、分解时,把二次项、常数项分别分解成两个数的积,并使它们交叉相乘的积的各等于一次项。

18、需要注意的是:⑴如果常数项是正数,则应把它分解成两个同号的因数,若一次项是正,则同正号;若一次项是负,则应同负号。

19、⑵如果常数项是负数,则应把它分解成两个异号的因数,交叉相乘所得的积中,绝对值大的与一次项的符号相同(若一次项是正,则交叉相乘所得的积中,绝对值大的就是正号;若一次项是负,则交叉相乘所得的积中,绝对值大的就是负号)。

20、 16. 解:原式=(x-2y)(5x+4y) 17.证明: 原式=31998(32-4×3+10)= 31998×7,∴ 能被7整除。

21、 18. 证明: =8(82n-7n)+8×7n+7n+2=8(82n-7n)+7n(49+8)=8(82n-7n)+57 7n 是57的倍数. 19.证明: =4x2-12x+9+9y2+30y+25+1=(2x-3)2+(3y+5)2+1≥1. 20.解:∵x2+y2-4x+6y+13=0 ∴x2-4x+4+y2+6y+9=0 (x-2)2+(y+3)2=0 (x-2)2≥0, (y+3)2≥0. x-2=0且y+3=0 x=2,y=-3 21.解:∵a-b=8 ∴a=8+b 又ab+c2+16=0 即∴(b+8)b+c2+16=0 即(b+4)2+c2=0 又因为,(b+4)2≥0,C2≥0, ∴b+4=0,c=0, b=-4,c=0,a=b+8=4 ∴a+b+c=0. 22. 解:设它的另一个因式是x2+px+6,则 x4-6x3+mx2+nx+36=(x2+px+6)(x2+3x+6)=x4+(p+3)x3+(3p+12)x2+(6p+18)x+36 比较两边的系数得以下方程组: 解得。

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!